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Synthesis and stereochemical determination of an antifeeding
bisabolanoid from Japanese cedar
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Abstract

The first enantioselective synthesis of (1S,3R,6R)-1-hydroxy-7(14),10-bisaboladien-4-one, a potent antifeedant isolated from
the Japanese cedar, Cryptomeria japonica, was achieved starting from methyl (R)-4-hydroxy-3-methylbutanoate via a stereoselective
carbonyl ene cyclization reaction as the key step. Comparison of the spectral data and specific rotation of the synthetic material with
those of the natural product led to unambiguous stereochemical assignment of the antifeedant as 1S, 3R, and 6R.
� 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Structures of antifeedants from Japanese ceder and cryptomerione.
In the course of screening for bioactive products from
the Japanese cedar, Cryptomeria japonica, Kim and co-
workers isolated hydroxy bisabolatrienone 2 as a potent
antifeedant against the snail, Acusta despesta (a well-
known pest of many agricultural crops) (Fig. 1).1 This bisa-
bolanoid 2 had originally been reported by Nagahama
et al. as a chemical constituent of C. japonica without the
assignment of the absolute stereochemistry and with no
mention of biological activity.2 Its absolute configuration
was later determined by Kim et al. as depicted in Figure
1 by converting the natural product into cryptomerione
and comparing its specific rotation with those of both
enantiomers of cryptomerione derived from (R)- and (S)-
carvones.3 They also discovered that sesquiterpenoid 2
exhibited repelling and antifeeding activities against the
pill-bug (Armadillidium vulgare) and the locust (Locusta

migratoria, a notorious pest, which often causes massive
damage to agricultural crops throughout the world) when
mixed with sandaracopimarinol and hydroxy bisaboladie-
none 1, respectively, which were also isolated from C.
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japonica.4,5 Based on extensive bioassays, they found that
compound 1 was essential for the antifeeding activity, while
compound 2 played a role to support the activity of 1.5

Although the gross structure of 1 was deduced from spec-
troscopic analyses including H–H and C–H COSY experi-
ments, any information on the stereochemistry of 1 was not
provided in their report. We describe herein the enantio-
selective synthesis of one of the stereoisomers of 1, which
culminated in the successful determination of the absolute
stereochemistry of 1.
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Scheme 1. Retrosynthetic analysis of (1S,3R,6R)-1.
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Scheme 2. Reagents and conditions: (a) TESCl, Et3N, DMAP, CH2Cl2,
rt; (b) DIBAL, CH2Cl2, �78 to �40 �C; (c) TBSCl, Imid, DMF, rt (95%,
three steps); (d) DMSO, (COCl)2, Et3N, CH2Cl2, �78 �C; (e) allylmag-
nesium bromide, ether, �78 �C (66%, two steps); (f) Ac2O, Et3N, DMAP,
CH2Cl2, rt; (g) 2-methyl-2-butene (as solvent), Grubbs cat. (2nd gener-
ation), rt (95%, two steps); (h) TBAF, THF, 0 �C; (i) DMSO, (COCl)2,
Et3N, CH2Cl2, �78 �C (83%, two steps); (j) ZnBr2, toluene, �78 to 0 �C
(82%).
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Scheme 3. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, CH2Cl2,
�78 �C; (b) DIBAL, CH2Cl2, �78 �C (85%, two steps); (c) TESOTf, 2,6-
lutidine, CH2Cl2, �78 �C (quant); (d) DMSO, (COCl)2, Et3N, CH2Cl2,
�78 �C (ca. 90%).
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Assuming that the absolute configurations at the C1 and
C6 chiral centers of 1 would be S and R, respectively, from
the (1S,6R)-stereochemistry assigned to 2 by Kim et al.,3

we decided to synthesize (1S,3R,6R)-1 as a candidate for
the natural stereoisomer of antifeedant 1.6 Our synthetic
plan for (1S,3R,6R)-1 featuring stereoselective installation
of the chiral centers on its cyclohexane ring via an intra-
molecular carbonyl ene reaction (C?B) is shown in
Scheme 1. Enal C was considered to be obtained from
the known hydroxy ester 3 through protections and adjust-
ment of the oxidation levels of the two oxygen functional-
ities of 3 followed by nucleophilic introduction of a prenyl
group. On the other hand, the chain-elongation of B into A

utilizing the double bond of the isopropenyl substituent
and subsequent deprotections and oxidation of A would
furnish the target molecule (1S,3R,6R)-1.

The known hydroxy ester 3, obtained by the reduction
of commercially available (R)-(+)-2-methylsuccinic acid
4-methyl ester with BH3�SMe2,7 was protected as its TES-
ether, and the ester group was reduced and then protected
to give 4 (Scheme 2). Direct oxidation of the TES-oxy
group under the Swern oxidation conditions proceeded
smoothly to afford 5.8 The introduction of a prenyl group
to aldehyde 5 to form 8 was performed by a three-step
sequence of reactions: (1) nonstereoselective addition of
allylmagnesium bromide to give 6 (diastereomeric
ratio = ca. 1:1); (2) protection of the resulting alcohol 6

to acetate 7; and (3) cross-metathesis reaction of the termi-
nal olefin 7 with 2-methyl-2-butene.9 The metathesis step to
furnish 8 proceeded quite efficiently (ca. 95% yield),
although trace amounts of olefinic byproducts (<5%) were
also produced, as judged by 1H NMR analysis.10 Deprotec-
tion of the TBS group of 8 and the Swern oxidation of the
resulting alcoholic intermediate afforded enal 9a, which set
the stage for the stereoselective construction of cyclic inter-
mediate 10a. It is well established that the treatment of 9b

(deacetoxy analog of 9a) with ZnBr2 or ZnI2 induces a
highly stereoselective cyclization via intramolecular car-
bonyl ene reaction, giving 10b with 1,3-cis-1,6-trans relative
stereochemistry.11 According to this protocol, we treated
enal 9a with ZnBr2 in toluene and found that the cycli-
zation reaction proceeded stereoselectively to afford a mix-
ture consisting mainly of the desired 1,3-cis-1,6-trans-dia-
stereomers (10a) accompanied by only a small quantity
of the undesired diastereomers (<10%). The ratio of the
two major diastereomers (4-a-10a and 4-b-10a) was ca.
1:1, reflecting the diastereomeric ratio of the starting enal
9a, which means that the stereochemistry of the C4 posi-
tion of 9a bearing an acetoxy substituent had little influ-
ence on the stereochemical course of the cyclization. The
stereochemical assignment of the two diastereomers was
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conducted after converting the diastereomeric mixture 10a

into 11 through protection (TBSOTf, 2,6-lutidine) and
reduction (DIBAL) (Scheme 3). The diastereomeric mix-
ture of alcohols (11) could readily be separated by SiO2 col-
umn chromatography to provide pure samples of 11a and
11b, which were subjected to 1H NMR analysis
(500 MHz, CDCl3). In the a-alcohol 11a, the coupling con-
stants between 1-H and 6-H, and 3-H and 4-H were both
10.3 Hz, and a NOE correlation was observed between
4-H and 6-H, supporting the stereochemistry as shown in
Scheme 3.12 On the other hand, the signals for 1-H
and 4-H of 11b were observed as a double triplet
(J1,6 = 10.3 Hz) and seemingly as a broad singlet with a
narrow half-width of 8.5 Hz, respectively.12 Furthermore,
both 11a and 11b converged into the same ketone 13 when
exposed to the Swern oxidation conditions. These results
confirmed our stereochemical assignments for 11a and
11b, and thereby for the ene cyclization products 10a as
well. In our actual synthesis, the mixture of alcohols 11

was treated, without separation, with TESOTf and 2,6-
lutidine to give 12, and the resulting epimeric mixture
was subjected to the next step.

The final stage of our synthesis required the installation
of a prenyl group at the allylic methyl position of 12

(Scheme 4). For this purpose, the olefinic compound 12

was first exposed to ozonolysis conditions to afford ketone
14, which was then prenylated by a conventional method
(LDA, prenyl bromide, THF/HMPA) to furnish 15. Treat-
ment of ketone 15 with the Nysted reagent gave methyl-
enated product 16,13 and subsequent selective deprotection
of its TES group (TBAF, AcOH, DMF)14 followed by oxi-
dation (Dess–Martin’s periodinane) and removal of the
TBS protecting group (aq HF, CH3CN)15 gave
(1S,3R,6R)-1 as a white crystalline solid (mp 79.5–80 �C,
lit.6 75.5–76 �C). The 1H and 13C NMR spectra of
(1S,3R,6R)-1 recorded in CDCl3 at 500 MHz and
125 MHz, respectively, were identical with those of the
natural product,5 and, furthermore, the specific rotation
of (1S,3R,6R)-1 (½a�22

D +41 (c 0.29, CHCl3)) matched that
reported for the natural product by Nagahama et al.
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(½a�31:3
D +38 (c 0.087, CHCl3)).6,16 On the basis of these

results, the stereochemistry of antifeedant 1 was unambi-
guously determined to be 1S, 3R, and 6R.

In conclusion, the enatioselective synthesis of (1S,3R,
6R)-1-hydroxy-7(14),10-bisaboladien-4-one (1) was accom-
plished in 15% overall yield from the known hydroxy ester
3 by a 19-step sequence involving the stereoselective intra-
molecular carbonyl ene reaction of 9a into 10a as the key
step. Good agreement between the synthetic and natural
products in spectral data and specific rotation enabled us
to unambiguously determine the absolute stereochemistry
of the antifeedant as 1S, 3R, and 6R. The synthesis of
the other antifeedant component 2 and related natural
products is currently in progress.
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